Development and evaluation of a synthetic Cu-Zn-reinforced biphasic calcium phosphate scaffold for periodontal bone repair

Authors

  • Devina Novelia School of Medicine and Health Sciences, Universitas Katolik Indonesia Atma Jaya, Jakarta, Indonesia https://orcid.org/0009-0002-4833-8732
  • Theophani O. Cahyadi School of Medicine and Health Sciences, Universitas Katolik Indonesia Atma Jaya, Jakarta, Indonesia https://orcid.org/0009-0006-7870-7710
  • Natasya MP. Sidharta School of Medicine and Health Sciences, Universitas Katolik Indonesia Atma Jaya, Jakarta, Indonesia https://orcid.org/0009-0004-6810-4559
  • Mora Octavia Departement of Dental Medicine, School of Medicine and Health Sciences, Universitas Katolik Indonesia Atma Jaya, Jakarta, Indonesia https://orcid.org/0000-0002-4995-8047
  • Evi UM. Situmorang Departement of Physiology and Physics, School of Medicine and Health Sciences, Universitas Katolik Indonesia Atma Jaya, Jakarta, Indonesia https://orcid.org/0000-0003-0636-8378
  • Daniel Edbert Departement of Microbiology, School of Medicine and Health Sciences, Universitas Katolik Indonesia Atma Jaya, Jakarta, Indonesia https://orcid.org/0000-0001-6278-3256

DOI:

https://doi.org/10.52225/narra.v6i1.3001

Keywords:

Biphasic Calcium Phosphate, Periodontitis, Physiochemical characterization, Porosity, Biological Assessment

Abstract

Periodontal bone defects require bone grafting materials that provide structural stability, biocompatibility, and reliable biological performance. Synthetic alloplastic scaffolds composed of biphasic calcium phosphate, integrating hydroxyapatite (HAp) and β-tricalcium phosphate (β-TCP), offer a promising alternative to other graft materials. Polycaprolactone provides flexibility and support for pore formation, while copper (Cu) and zinc (Zn) ions contribute to their antimicrobial and osteogenic benefits. This study aimed to investigate the physicochemical, morphological, mechanical, and biological properties of a synthetic HAp40/β-TCP60 alloplastic scaffold reinforced with polycaprolactone and to compare them with those of a commercial xenograft. The scaffold was fabricated using a freeze-drying method with dimethylformamide, and characterization included Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) for chemical and crystalline confirmation, Archimedes principle for porosity, light microscopy, and scanning electron microscopy (SEM) for morphological assessment, compressive testing, blood adhesion, as well as water and blood absorption analysis. FTIR and XRD verified the successful incorporation of polycaprolactone and the formation of a well-ordered biphasic calcium phosphate structure. Light microscopy showed that the synthetic scaffold had smaller macropore dimensions (324±49 µm) than the control (1410±541 µm), while SEM demonstrated markedly higher microporosity (8.184±2.581 µm) compared to the control (0.287±0.091 µm). Water absorption was lower in the synthetic scaffold (174.7%) than in the control (1172.5%), whereas blood absorption was comparable (300% vs 316.6%). The synthesized scaffold also exhibited superior blood adhesion, as evidenced by the absence of turbidity after agitation. Mechanical testing revealed that the control had superior compressive and yield strengths (0.980 MPa and 0.537 MPa, respectively) compared to the synthesized scaffold (0.287 MPa and 0.126 MPa, respectively). In conclusion, the synthetic HAp40/β-TCP60 scaffold exhibited properties within optimal ranges, highlighting its potential as a promising synthetic alloplastic material for clinical bone regeneration.

Downloads

Download data is not yet available.

References

Goddard M, Smith P. Equity of access to health care services: Theory and evidence from the UK. Soc Sci Med Gasner NS. Periodontal disease. U.S. National Library of Medicine; 2023 https://www.ncbi.nlm.nih.gov/books/NBK554590/

Wijaksana IKE. Periodontal Chart dan Periodontal Risk Assessment Sebagai Bahan evaluasi Dan Edukasi Pasien Dengan Penyakit Periodontal. Jurnal Kesehatan Gigi. 2019 Jun 4;6(1):19.

Mehrotra N. Periodontitis. U.S. National Library of Medicine; 2023 https://www.ncbi.nlm.nih.gov/books/NBK541126/

Kwon T, Lamster IB, Levin L. Current Concepts in the Management of Periodontitis. International Dental Journal. 2021 Dec;71(6):462–76.

Hutama AS, Nugroho A. Optimasi Pembuatan scaffold Dengan Struktur Pori-Pori beraturan menggunakan metode response surface method. JMPM (Jurnal Material dan Proses Manufaktur). 2020;4(1):1-11.

Filda N, Triviana N, Nathania A, Saputro. Identification of Calcium and Phosphate Content in Chicken Bones and Duck Bones. Science, Engineering, and Technology. Nusantara Science and Technology Proceedings. 2021 Nov 12;:35-39.

Zhang J, Li S, He H, Han L, Zhang S, Yang L, et al. Clinical guidelines for indications, techniques, and complications of autogenous bone grafting. Chinese Medical Journal 2024 Jan 5;137(1):5–7.

Habibah TU, Salisbury HG. Hydroxyapatite Dental Material PubMed. Treasure Island (FL): StatPearls Publishing; 2020. https://www.ncbi.nlm.nih.gov/books/NBK513314/

Family R, Solati-Hashjin M, Namjoy Nik S, Nemati A. Surface modification for titanium implants by hydroxyapatite nanocomposite. Caspian journal of internal medicine.2012 3(3):460–5.

Rodríguez VR, Gonzales APG, Avila JG, Caballero AD. Use of beta-tricalcium phosphate bone graft in dental implants for bone regeneration. Bionorte. 2022 Apr 26;11(1):182–9.

Pae H, Kang J, Cha J, Lee J, Paik J, Jung U, et al. Bone regeneration using three‐dimensional hexahedron channel structured BCP block in Rabbit Calvarial defects. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2019 Jan 24;107(7):2254–62.

Titsinides S, Agrogiannis G, Karatzas T. Bone grafting materials in dentoalveolar reconstruction: A comprehensive review. Japanese Dental Science Review. 2019 Nov;55(1):26–32.

Liu J, Guo X, Che Q, Su Z. Chitosan-Oligosaccharide-Bearing Biphasic Calcium Phosphate Bone Cement: Preparation and Angiogenic Activity In Vitro. Molecules. 2025 May 23;30(11):2286.

Lee JH, Ryu MY, Baek HR, Lee KM, Seo JH, Lee HK. Fabrication and Evaluation of Porous Beta‐Tricalcium Phosphate/Hydroxyapatite (60/40) Composite as a Bone Graft Extender Using Rat Calvarial Bone Defect Model. The Scientific World JOURNAL. 2013 Jan 1;2013(1):481789–9.

Ramin Raoufinia, Hashemi S, Arabi K, Karim Naghipoor, Farhad Fakoor, Ehsan Saburi. Poly ε-Caprolactone Scaffolds: Advancements in Bone Regeneration and Grafting. OBM Transplantation. 2025 Apr 2; 09(02):1–8.

Ressler A, Žužić A, Ivanišević I, Kamboj N, Ivanković H. Ionic substituted hydroxyapatite for bone regeneration applications: A review. Open Ceramics 2021 Jun 1;6:100122:1-13.

Shen Q, Qi Y, Kong Y, Bao H, Wang Y, Dong A, et al. Advances in Copper-Based Biomaterials With Antibacterial and Osteogenic Properties for Bone Tissue Engineering. Frontiers in Bioengineering and Biotechnology 2022 Jan 20;9.

O’Connor JP, Kanjilal D, Teitelbaum M, Lin SS, Cottrell JA. Zinc as a Therapeutic Agent in Bone Regeneration. Materials. 2020 May 12;13(10):1-22.

Esfahanizadeh N, Nourani MR, Bahador A, Akhondi N, Montazeri M. The Anti-biofilm Activity of Nanometric Zinc doped Bioactive Glass against Putative Periodontal Pathogens: An in vitro Study. Biomedical Glasses. 2018 Nov 1;4(1):95–107.

Afshin Yadegari Naini, Sepehr Kobravi, Jafari A, Mohammadhassan Lotfalizadeh, Narges Lotfalizadeh, Farhadi S. Comparing the effects of Bone+B® xenograft and InterOss® xenograft bone material on rabbit calvaria bone defect regeneration. Clinical and Experimental Dental Research. 2024 May 26;10(3):e875–5.

Amini Z, Lari R. A systematic review of decellularized allograft and xenograft–derived scaffolds in bone tissue regeneration. Tissue and Cell. 2021 Apr;69:101494.

Maria Pia Ferraz. Bone Grafts in Dental Medicine: An Overview of Autografts, Allografts and Synthetic Materials. Materials. 2023 May 31;16(11):4117–7.

Capuana E, Lopresti F, Carfì Pavia F, Brucato V, La Carrubba V. Solution-Based Processing for Scaffold Fabrication in Tissue Engineering Applications: A Brief Review. Polymer. 2021 Jun 22;13(13):1-20.

Jang IN, Ahn YS. The Study of Copper Powder Sintering for Porous Wick Structures with High Capillary Force. Materials. 2023 Jun 7;16(12):4231–1.

Manalu FRG, Basuki WW. Rancang Bangun Alat Uji Kekuatan Material Polimer dan Komposit Polimer Berpenguat Serat Alam. Cylinder : Jurnal Ilmiah Teknik Mesin. 2025 May 7;11(1).

Callister WD. Materials Science and Engineering: An Introduction, 10th Edition. 10th ed. Wiley; 2018. 169–197 p.

Rozykulyyeva L, Widiyanti P, Astuti SD. Pomegranate-peel-chitosan-gelatin composite: A hemostatic dental sponge with antibacterial enhancement. Dental Journal. 2025 Mar 20;58(2):171–9.

Dumitrescu C, Ionela Andreea Neacsu, Vasile-Adrian Surdu, Adrian Ionut Nicoara, Florin Iordache, Trusca R, et al. Nano-Hydroxyapatite vs. Xenografts: Synthesis, Characterization, and In Vitro Behavior. Nanomaterials. 2021 Sep 2;11(9):2289–9.

Suhaily F, Abdul Manaf Abdullah, Asanah Radhi, Nazatul W, Johari Yap Abdullah. Physicochemical Characterization of Thermally Processed Goose Bone Ash for Bone Regeneration. Journal of functional biomaterials. 2023 Jun 30;14(7):351–1.

Ko YG. Formation of oriented fishbone-like pores in biodegradable polymer scaffolds using directional phase-separation processing. Scientific Reports. 2020 Sep 2;10(1).

Aboudzadeh N, Alireza Khavandi, Jafar Javadpour, Shokrgozar MA, Imani M. Effect of Dioxane and N-Methyl-2-pyrrolidone as a Solvent on Biocompatibility and Degradation Performance of PLGA/nHA Scaffolds. Iranian Biomedical Journal. 2021 Oct 1;25(6):408–16.

Bahir MM, Rajendran A, Pattanayak D, Lenka N. Fabrication and characterization of ceramic-polymer composite 3D scaffolds and demonstration of osteoinductive propensity with gingival mesenchymal stem cells. RSC Advances. 2023;13(38):26967–82.

Lee JH, Yi GS, Lee JW, Kim DJ. Physicochemical characterization of porcine bone-derived grafting material and comparison with bovine xenografts for dental applications. Journal of Periodontal & Implant Science. 2017;47(6):388.

Ramírez-Ruiz F, Núñez-Tapia I, Piña-Barba MC, Alvarez-Pérez MA, Guarino V, Serrano-Bello J. Polycaprolactone for Hard Tissue Regeneration: Scaffold Design and In Vivo Implications. Bioengineering. 2025 Jan 8;12(1):46.

Murphy CM, Haugh MG, O’Brien FJ. The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials. 2010 Jan;31(3):461–6.

Chen JS, Tu SL, Tsay RY. A morphological study of porous polylactide scaffolds prepared by thermally induced phase separation. Journal of the Taiwan Institute of Chemical Engineers. 2010 Mar;41(2):229–38.

Abbasi N. Porous scaffolds for bone regeneration. Journal of Science: Advanced Materials and Devices. 2020 Mar 1;5(1):1–9.

Yaseri R, Fadaie M, Mirzaei E, Samadian H, Ebrahiminezhad A. Surface modification of polycaprolactone nanofibers through hydrolysis and aminolysis: a comparative study on structural characteristics, mechanical properties, and cellular performance. Scientific Reports. 2023;13(1):9434.

Yusof AA bin M, Januddi MAFMS, Isa KM, Khalid MFS, Kadir Ros Atikah Abdul. The Effect of Porosity and Contact Angle on the Fluid Capillary Rise for Bone Scaffold Wettability and Absorption. Malays J Med Health Sci. 2022;18(6):6–11.

Sanz M, Dahlin C, Apatzidou D, Artzi Z, Bozic D, Calciolari E, et al. Biomaterials and regenerative technologies used in bone regeneration in the craniomaxillofacial region: Consensus report of group 2 of the 15th European Workshop on Periodontology on Bone Regeneration. J Clin Periodontol. 2019 June;46(S21):82–91.

Juan P-K, Fan F-Y, Lin W-C, Liao P-B, Huang C-F, Shen Y-K, et al. Bioactivity and bone cell formation with poly-ε-caprolactone/bioceramic 3D porous scaffolds. Polymers. 2021 Aug 13;13(16):3-21

Yusof Aabm, Isa Km, Szali Mafm, Johar M, Mahmud J, Harun Mn. Fracture Characteristics Of Pla Synthetic Bone Scaffolds With Different Specimen Porosities. Journal of Engineering Science and Technology. 2023;18(5):2493–506.

Sunarso S, Suryadi A, Indrani DJ, Pangesty AI. Compressive Strength of Newly Developed Nonsintered Hydroxyapatite Blocks for Bone Graft Applications. Eur J Dent. 2024 July;18(03):815–9.

Downloads

How to Cite

Novelia, D., Cahyadi, T. O., Sidharta, N. M., Octavia, M., Situmorang, E. U., & Edbert , D. (2026). Development and evaluation of a synthetic Cu-Zn-reinforced biphasic calcium phosphate scaffold for periodontal bone repair. Narra J, 6(1). https://doi.org/10.52225/narra.v6i1.3001

Issue

Section

Original Article

Citations